杨振宁先生的数学贡献丨庆贺杨振宁先生百岁华诞
The following article is from 普林小虎队 Author 普林小虎队
点击上方蓝字“返朴”进入主页,可关注查阅往期文章
2021年10月1日是杨振宁先生的百岁华诞。(杨先生实际年龄99岁,虚岁一百,官方文件上的生日是9月22日。)我们特发表此文,为杨先生贺。
撰文 | 倪忆
杨振宁先生(1922.10.1— )从来不认为自己是一位数学家。事实上,杨先生曾经说过:“现今只有两类数学著作。一类是你看完了第一页就不想看下去了, 另一类是你看完了第一句话就不想看下去了。”然而,杨振宁先生对现代数学有着广泛而深远的影响。在20世纪后半叶的物理学家里,恐怕只有威腾(Edward Witten,1951— )对数学的影响能够跟杨先生相提并论。本文试图对杨先生的数学贡献作一些简单介绍。需要说明的是,这里涉及到许多非常深刻的数学,作者本人了解的仅仅是其中一小部分,错漏之处在所难免,希望方家指正。
杨振宁所作题为“20世纪数学与物理的分与合”的讲座中的一页图片
杨-米尔斯理论
普林斯顿高等研究院在四十年代的一次会议,其中有爱因斯坦(左三)和外尔(右二)(图源:高等研究院档案)
外尔最初引入的尺度因子是正实数。量子力学兴起后,外尔在1929年修改了他的规范场论,把尺度因子改成模长为1的复数,用以描述电磁场。福克(Vladimir Fock,1898—1974)和伦敦(Fritz London,1900—1954)等人也在这一时期作出了类似发现。1941年,泡利(Wolfgang Pauli,1900—1958)把规范场理论普及给物理学界。
在数学里,所有模长为1的复数组成一个群U(1)。这个群被称作外尔规范场论里的规范群。如果一个群里的乘法是可交换的,这个群就被被称作阿贝尔群,反之就是非阿贝尔群。例如大多数矩阵群都是非阿贝尔群,因为乘法交换律对于矩阵乘法不成立。外尔理论里的规范群是阿贝尔群,所以外尔理论是一个阿贝尔规范场论。
我们知道,自然界中有四种基本力:电磁力、弱相互作用、强相互作用、万有引力。外尔等人的工作把电磁力用U(1)规范场论来描述,而万有引力的物理理论则是爱因斯坦的广义相对论。1954年,杨振宁和米尔斯(Robert Mills,1927—1999)把规范场论里的规范群从U(1)改成二阶正交酉矩阵群SU(2),建立了第一个非阿贝尔规范场论。杨振宁和米尔斯最初想用这一理论来描述强相互作用,但这并不正确。经过后来许多物理学家的努力,SU(2)规范场论被成功地用于描述弱相互作用。而强相互作用则需要使用规范群为SU(3)的规范场论,通常也被称为杨-米尔斯理论。
1999年,杨振宁与米尔斯在杨振宁退休庆祝会议上丨图源:American Institute of Physics
统计学家斯蒂格勒(Stephen Stigler,1941— )曾提出一个“斯蒂格勒定律”,即“没有一个科学发现是以最初发现者的名字来命名”。斯蒂格勒定律本身就符合这一定律,因为斯蒂格勒认为这个定律是默顿(Robert Merton,1910—2003)首先提出的。杨-米尔斯理论也符合斯蒂格勒定律——泡利在1953年就得到了一个类似的理论。日本物理学家内山龙雄(1916—1990)为了统一万有引力和电磁力,在1954年独立提出了非交换规范场论。他曾在京都大学作报告,但没有得到听众的积极回应。得知杨-米尔斯的工作后,内山龙雄在1955年把自己的论文修改成为一个更广泛的规范场论,并在1956年发表。比杨振宁和米尔斯稍晚,萨拉姆(Abdus Salam,1926—1996)的学生萧(Ronald Shaw,1929—2016)在1955年也独立发现了杨-米尔斯理论。
尽管泡利、内山、萧都独立于杨振宁和米尔斯得到了非交换规范场论,但杨振宁和米尔斯毫无疑问应当获得最大的荣誉。泡利和萧的工作都没有发表,因为他们对其中的物理图景不甚明了。内山发表论文在杨-米尔斯之后,且受到杨-米尔斯的影响。只有杨振宁和米尔斯将这个尚存瑕疵的理论率先发表出来,让后来者得以在此基础上进行研究。
一个经常被提到的故事是,当杨振宁在普林斯顿作杨-米尔斯理论的报告时,台下的泡利不停地问他非阿贝尔规范玻色子的质量是什么。泡利曾经深入研究过这一问题,知道质量应该是零,而这是不可能的。杨振宁回答说他不知道,但泡利一再追问。杨振宁认为泡利的敌意过重,干脆停止演讲坐到台下,场面一时十分尴尬。最后,奥本海默(J. Robert Oppenheimer,1904—1967)说,“我们应该让杨振宁继续讲。”杨振宁才回到讲台上,而泡利也没有问更多的问题。[2] 杨-米尔斯理论中的质量问题直到六十年代才通过希格斯机制得到解决。
杨振宁和米尔斯建立了杨-米尔斯理论的数学形式,其物理应用则应归功于后来者。然而,与杨-米尔斯理论有关的数学成为现代数学里一个重要组成部分。1969年,杨振宁在纽约州立大学石溪分校讲授一门广义相对论课程。一天,他在黑板上写下广义相对论所需要用到的黎曼曲率张量公式,突然发现这个公式很像杨-米尔斯理论里的一个公式。他十分震惊,便去请教数学系主任西蒙斯(James Simons,1938— )。西蒙斯告诉他这两个公式都是纤维丛(fiber bundle)上的联络(connection)。杨振宁被这一美妙的联系深深地震撼了。[3]
1975年,杨振宁同吳大峻(1933— )发表一篇论文,把纤维丛的数学语言翻译为杨-米尔斯理论的物理语言,引发了数学界和物理学界对彼此工作的浓厚兴趣。这就是著名的吴-杨字典(Wu-Yang dictionary)。事实上,关于纤维丛与杨-米尔斯理论的关系,在吴-杨字典之前就有一些人提到。例如赫尔曼(Robert Hermann, 1931—2020)在1970年的一本专著中对此有详细阐述。但此类工作没有产生吴-杨字典那样的影响,这或许也可以算作斯蒂格勒定律的一个例子。
吴-杨字典丨图源:I. M. Singer, Some problems in the quantization of gauge theories and string theories)
七十年代后期,辛格(Isadore Singer,1924—2021)把吴-杨字典介绍给数学界,引发了数学家们学习杨-米尔斯理论的热潮。一大批崭新的数学工作得以诞生,为数学发展提供了新的动力。以下简要介绍其中一部分。
杨-米尔斯理论中出现了一个偏微分方程
1974年,谷超豪(左一)、胡和生(左二)与杨振宁开始合作研究规范场论(图源:中国科学报)
1977-1978年,阿蒂亚(Michael Atiyah,1929—2019)、希钦(Nigel Hitchin,1946— )和辛格证明了四维球面上杨-米尔斯方程的解的模空间是一个流形,并用指标定理计算了其维数。1978年,阿蒂亚、希钦、德林菲尔德(Vladimir Drinfeld,1954— )、马宁(Yuri Manin,1937— )四人合写一篇论文,完全确定了这一模空间。
1982年,乌伦贝克(Karen Uhlenbeck,1942— )证明了杨-米尔斯方程解的许多基本性质,包括(四维的)可去奇点定理和(任意维数的)紧性定理。田刚(1958— )和陶哲轩(1975— )后来把可去奇点定理推广到了高维。
1982年,陶布斯(Clifford Taubes,1954— )发现了一种新的构造杨-米尔斯方程解的方法,对于一大类四维流形证明了解的存在性。
复流形上杨-米尔斯方程的研究始于阿蒂亚和博特(Raoul Bott,1923—2005)在八十年代初的工作。小林昭七(1932—2012)和希钦猜测复流形上杨-米尔斯方程的解跟向量丛的稳定性有关,这一猜想被唐纳森(Simon Donaldson,1957— )、乌伦贝克和丘成桐(1949— )解决。受此启发,丘成桐对复流形的凯勒-爱因斯坦度量作出类似猜想。田刚和唐纳森进一步阐述了丘成桐的猜想,引入了K-稳定性的概念,在复几何和代数几何领域起到了核心作用。
希钦在1987年定义了一维复流形上的希格斯丛,并研究了其上的杨-米尔斯方程。辛普森(Carlos Simpson,1962— )把希钦的工作推广到了高维。希格斯丛是近年来几何拓扑领域的研究热点,并且在数论和表示论中得到了出乎意料的应用。吴宝珠(1972— )使用希钦的工作证明了朗兰兹纲领中的“基本引理”,并因此获得2010年菲尔兹奖。1986年菲尔兹奖得主法尔廷斯(Gerd Faltings,1954— )开创了p进数域上希格斯丛的研究。卡普斯金(Anton Kapustin,1971— )和威腾则使用希钦的工作(及其推广)来研究几何朗兰兹纲领。
杨-米尔斯方程最著名的数学应用是在低维拓扑领域。1983年,在乌伦贝克和陶贝斯工作的基础上,唐纳森使用杨-米尔斯方程研究四维流形的微分拓扑,取得了令人惊异的结果。把唐纳森和弗里德曼(Michael Freedman,1951— )的工作结合起来,能够证明四维空间R^4上有怪异的微分结构,而这一点对其余维数的欧氏空间不成立。唐纳森后来进一步发展了他的理论,定义了光滑四维流形的不变量。唐纳森因此获得1986年菲尔兹奖。
1988年,弗洛尔(Andreas Floer,1956—1991)把唐纳森理论发展到了三维流形上,定义了瞬子同调论。1998年,唐纳森和他的学生托马斯(Richard Thomas)使用SU(4)规范场论来研究卡拉比-丘三维复流形。2006年菲尔兹奖得主奧昆科夫(Andrei Okounkov,1969— )和他的合作者们对唐纳森-托马斯理论有重要贡献。
唐纳森理论的思想如今在低维拓扑、辛几何、代数几何、复几何等许多领域里都占据着主导地位,其后续发展包括格罗莫夫-威腾理论、塞伯格-威腾理论等等,尽管杨-米尔斯方程在这些理论里已经不再出现。
杨-米尔斯方程在低维拓扑里的另外一个应用跟琼斯多项式有关,这是琼斯(Vaughan Jones,1952—2020)在1984年发现的一个新的纽结不变量。威腾在1989年指出,琼斯多项式可以用杨-米尔斯理论来解释。威腾的思想被雷希蒂欣(Nicolai Reshetikhin,1958— )和图拉耶夫(Vladimir Turaev,1952— )发展为严格的数学理论,可以用来构造一般三维流形的不变量。近二十年来,琼斯多项式的一个推广——霍瓦诺夫同调论(Khovanov homology)——成为低维拓扑里的研究热点。威腾同样用杨-米尔斯理论给出了霍瓦诺夫同调论的一种解释,引发了许多数学家的关注。
杨-巴克斯特方程
杨-巴克斯特方程最早可以追溯到昂萨格(Lars Onsager,1903—1976)在1944年关于二维伊辛模型的工作,其中使用了星形-三角形方程。[4] 1963年,UCLA的一名博士生麦奎尔(James B. McGuire,1934—2019)在研究一维量子多体问题时发现了类似的矩阵方程。杨振宁在1963年访问UCLA时,跟麦奎尔讨论了一维量子多体问题。当时杨振宁已经是名满天下的诺贝尔奖得主,而麦奎尔仅仅是一个博士尚未毕业的无名小卒,然而杨振宁并未因此轻视麦奎尔的工作。受到麦奎尔的启发,杨振宁在1967年和1968年的两篇论文里提出了现今形式的杨-巴克斯特方程。后来巴克斯特(Rodney Baxter,1940— )在1971年和1972年的两篇统计力学论文里也独立发现了此方程。
杨振宁与巴克斯特在杨振宁退休庆祝会议上丨图源:Symmetry and Modern Physics - Yang Retirement Symposium, 1999
七十年代末,法捷耶夫(Ludvig Faddeev,1934—2017)领导的苏联数学物理学派将这一方程命名为杨-巴克斯特方程,并深入研究其在数学和物理里的应用。受他们工作的影响,德林菲尔德和神保道夫(1951— )开始了“量子群”的研究。德林菲尔德甚至将一类量子群命名为“杨代数”(Yangian),以纪念杨振宁的贡献。
杨-巴克斯特方程可以看作是数学中“辫群”的一个基本关系,能够用如下“辫子”的图像来表示。
西蒙斯几何与物理中心的墙上镌刻着一些基本的物理公式,图中左下角即杨-巴克斯特方程丨图源:西蒙斯几何与物理中心
1990年四位菲尔兹奖得主中,德林菲尔德、琼斯和威腾的(部分)获奖工作都跟杨-米尔斯理论和杨-巴克斯特方程有密切关系。森重文(1951— )是一位代数几何学家,他的获奖工作跟物理没有直接联系。近年来许晨阳(1981— )等人的工作把森重文开创的极小模型纲领同K-稳定性结合起来,而K-稳定性很大程度上是受杨-米尔斯理论启发而建立起来的。
李-杨单位圆定理
李-杨定理依赖于一个纯数学结果,即某一类多项式所有零点都在单位圆上。为了证明这一结果,李杨二人翻阅了哈代(G. H. Hardy,1877—1947)、李特尔伍德(John Littlewood,1885—1977)、波利亚(George Pólya,1887—1985)所著的《不等式》一书,还咨询了冯·诺伊曼(John von Neumann,1903—1957)和塞尔伯格(Atle Selberg,1917—2007)等同事。卡茨(Mark Kac,1914—1984)当时在普林斯顿高等研究院访问,他听到李杨的问题后,立刻想到了波利亚一篇关于黎曼假设的论文,并用其中的方法证明了李杨所需结果最简单的情形。卡茨将此事告知了李杨。受此启发,杨振宁和李政道继续研究了几个星期,终于用卡茨的方法以及数学归纳法证明了最广泛的情形。[6]
李-杨单位圆定理是统计力学里的重要工作,但它对数学的影响远不能同杨-米尔斯理论和杨-巴克斯特方程相提并论。然而,这个定理的叙述跟黎曼假设非常相像。如果作一个变量替换,就能把李-杨定理叙述成:某一类配分函数的零点都在虚轴上。黎曼假设说的是黎曼ζ函数
杨振宁的纯数学工作
杨振宁发表的第一篇论文就是纯数学论文。这是他在西南联大时写的,题为“On the uniqueness of Young's differentials”(Young微分的唯一性),1944年发表在《美国数学会通报》(Bulletin of the American Mathmatical Society)上。这篇论文的水平不高,杨振宁对它也很不满意。杨振宁最初仅仅是把它当作学习微积分的课外练习,几年后才在授课老师曾远荣(1903—1994)的建议下投寄出去发表。[8]
杨振宁的父亲杨武之教授在芝加哥大学获得博士学位,归国后任教于清华大学数学系,是中国数论研究的先驱。在杨武之的博士论文里,他考虑了华林问题的一个变种:求最小的k,使得任何一个自然数能够表示为最多k个“金字塔数”之和。这里的“金字塔数”指形如
1993年,杨振宁和邓越凡(1962— )用计算机研究了这一问题,发现十亿以内的自然数都能表示为至多5个金字塔数之和,并且其中足够大的数表示为至多4个金字塔数之和。据此,他们猜想足够大的自然数都能表示为至多4个金字塔数之和。他们进一步猜想了能表示为至多k个金字塔数之和的自然数的个数的渐进公式。
杨振宁与陈省身
陈省身是纤维丛和联络理论的主要推动者。他的陈-韦伊理论把杨-米尔斯方程中的曲率项同陈示性类联系起来,而陈-西蒙斯理论也跟杨-米尔斯理论密不可分。1975年,理解了杨-米尔斯理论与纤维丛的关系后,杨振宁驱车到陈省身家中,同他谈起此事,说:“这既令我惊讶,也令我迷惑不解,因为你们数学家凭空梦想出这些概念。”陈省身当即提出异议:“非也,非也,这些概念并非是凭空梦想出来的,它们既是自然的,也是实在的。”[3]
陈省身先生1985年在南开大学创建了南开数学研究所,他邀请杨振宁于1986年在所内建立了理论物理研究室。经杨振宁推荐,葛墨林(1938— )具体负责理论物理研究室的工作。这一研究室主要的研究方向便是与杨-米尔斯理论和杨-巴克斯特方程相关的数学。
杨振宁在七十年代写下一首诗《赞陈氏级》,在数学与物理学界广为流传:
天衣岂无缝,匠心剪接成。
浑然归一体,广邃妙绝伦。
造化爱几何,四力纤维能。
千古寸心事,欧高黎嘉陈。
其中最后一句称赞陈省身是可以与欧几里得(Euclid,公元前3世纪)、高斯(Carl Friedrich Gauss,1777—1855)、黎曼(Bernhard Riemann,1826—1866)、嘉当(Élie Cartan,1869—1951)并肩的几何学家。
2002年,江才健出版了《杨振宁传-规范与对称之美》。陈省身先生也赋诗一首作为序言:
以诗代序
杨子始开大道深。
物理几何是一家,
炎黄子孙跻西贤。
注:爱因斯坦的广义相对论将物理释为几何。规范场论作成大道,令人鼓舞。
两位大师尽管身处不同领域,但他们的伟大工作相得益彰,堪称佳话。
参考文献
[1] 张天蓉,外尔与杨振宁——物理的真与数学的美 | 量子群英会[2] Mikhail Shifman,非阿贝尔规范场的起源与争执:关于泡利与杨振宁的轶事[3] 张奠宙,杨振宁如何看待数学与物理[4] Helen Au-Yang and Jacques H. H. Perk, Onsager's Star-Triangle Equation: Master Key to Integrability, Advanced Studies in Pure Mathematics 19, 1989 Integrable Systems in Quantum Field Theory and Statistical Mechanics
[5] 刘钝、王浩强访问整理,爱因斯坦、物理学和人生——杨振宁先生访谈录[6] Mark Kac, Comments on G. Pólya's "Bemerkung uber die integraldarstellung der Riemannschen zeta-funktion"
[7] 华东师范大学数学科学学院,杨振宁专程看望数学科学学院张奠宙先生
[8] 施郁,杨振宁对西南联大的新回忆
[9] 陈省身,我与杨家两代的因缘
本文经授权转载自微信公众号“普林小虎队”。
相关阅读
1 杨-米尔斯规范原理和粒子物理标准模型丨庆贺杨振宁先生百岁华诞
2 宇称不守恒到底说了啥?杨振宁和李政道的发现究竟有多大意义?丨众妙之门
3 「上」追求对称之美:杨振宁超越他诺奖的贡献 | 附量子纠缠新观念 | 众妙之门
4 「下」追求对称之美:杨振宁超越他诺奖的贡献 | 附量子纠缠新观念 | 众妙之门
近期推荐
特 别 提 示
1. 进入『返朴』微信公众号底部菜单“精品专栏“,可查阅不同主题系列科普文章。
2. 『返朴』提供按月检索文章功能。关注公众号,回复四位数组成的年份+月份,如“1903”,可获取2019年3月的文章索引,以此类推。
收不到推送了?快加星标!!
长按下方图片关注「返朴」,查看更多历史文章